Short-term synchrony in diverse motor nuclei presumed to receive different extents of direct cortical input.

نویسندگان

  • Douglas A Keen
  • Li-Wei Chou
  • Michael A Nordstrom
  • Andrew J Fuglevand
چکیده

Motor units within human muscles usually exhibit a significant degree of short-term synchronization. Such coincident spiking typically has been attributed to last-order projections that provide common synaptic input across motor neurons. The extent of branched input arising directly from cortical neurons has often been suggested as a critical factor determining the magnitude of short-term synchrony. The purpose of this study, therefore, was to quantify motor unit synchrony in a variety of human muscles differing in the presumed extent of cortical input to their respective motor nuclei. Cross-correlation histograms were generated from the firing times of 551 pairs of motor units in 16 human muscles. Motor unit synchrony tended to be weakest for proximal muscles and strongest for more distal muscles. Previous work in monkeys and humans has shown that the strength of cortical inputs to motor neurons also exhibits a similar proximal-to-distal gradient. However, in the present study, proximal-distal location was not an exclusive predictor of synchrony magnitude. The muscle that exhibited the least synchrony was an elbow flexor, whereas the greatest synchrony was most often found in intrinsic foot muscles. Furthermore, the strength of corticospinal inputs to the abductor hallucis muscle, an intrinsic foot muscle, as assessed through transcranial magnetic stimulation, was weaker than that projecting to the tibialis anterior muscle, even though the abductor hallucis muscle had higher synchrony values compared with the tibialis anterior muscle. We argue, therefore, that factors other than the potency of cortical inputs to motor neurons, such as the number of motor neurons innervating a muscle, significantly affects motor unit synchrony.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common input across motor nuclei mediating precision grip in humans.

Short-term synchrony was measured for pairs of motor units located within and across muscles activated during a task that mimicked precision grip in the dominant and nondominant hands of human subjects. Surprisingly, synchrony for pairs of motor units residing in separate muscles (flexor pollicis longus, a thumb muscle, and flexor digitorum profundus, an index-finger muscle) was just as large a...

متن کامل

Common synaptic input to the human hypoglossal motor nucleus.

The tongue plays a key role in various volitional and automatic functions such as swallowing, maintenance of airway patency, and speech. Precisely how hypoglossal motor neurons, which control the tongue, receive and process their often concurrent input drives is a subject of ongoing research. We investigated common synaptic input to the hypoglossal motor nucleus by measuring the coordination of...

متن کامل

Glycinergic projection neurons of the cerebellum.

The cerebellum funnels its entire output through a small number of presumed glutamatergic premotor projection neurons in the deep cerebellar nuclei and GABAergic neurons that feed back to the inferior olive. Here we use transgenic mice selectively expressing green fluorescent protein in glycinergic neurons to demonstrate that many premotor output neurons in the medial cerebellar (fastigial) nuc...

متن کامل

Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system.

Dendritic lamellar bodies have been reported to be associated with dendrodendritic gap junctions. In the present study we investigated this association at both the morphological and electrophysiological level in the olivocerebellar system. Because cerebellar GABAergic terminals are apposed to olivary dendrites coupled by gap junctions, and because lesions of cerebellar nuclei influence the coup...

متن کامل

Common Input to Motor Neurons Innervating the Same and Different Compartments of the Human Extensor Digitorum Muscle Running Title: Motor Unit Sychrony in Human Extensor Digitorum

Short-term synchronization of active motor units has been attributed in part to lastorder divergent projections that provide common synaptic input across motor neurons. The extent of synchrony thus allows insight as to how the inputs to motor neurons are distributed. Our particular interest relates to the organization of extrinsic finger muscles that give rise distally to multiple tendons, whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 108 12  شماره 

صفحات  -

تاریخ انتشار 2012